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Table 3. Interatomic distances in Zr2Als 

Distances in the Zr co-ordination polyhedron 
(13 atoms) (A) 

Zr-A1 (a): 2.83, 2.89, 3.22 
Zr-A1 (b): 2.88, 2.91, 2.93, 2.97, 3"00 (twice) 
Zr-Zr: 3.40 (twice), 3.43 (twice) 

Distances in the general A1 co-ordination polyhedron 
(10 atoms) (A) 

A1-A1 (a): 2.67, 2.71 
A1-A1 (b): 2-77 (twice) 
AI-Zr: 2.88, 2.91, 2,93, 2.97, 3.00 (twice) 

Distances in the special A1 co-ordination polyhedron 
(I0 atoms) (A) 

A1-A1 (b): 2-67 (twice), 2.71 (twice) 
A1-Zr: 2.83 (twice), 2.89 (twice), 3.22 (twice) 

The co-ordination polyhedra do not  have any simple 
form. Their shapes can be obtained from the bonding 
shown in Fig. 1, where contacts outside the puckered 
t r iangular  nets are shown as dot ted  lines and the bonds 
within the nets are shown as full lines. 

No simple relation has been found between the struc- 
ture of ZreA18 and tha t  of ZrAle (Wilson, 1959). 
The basic symmet ry  operations in the two structures  
are different,  and, a l though there is a three-fold net  
in ZrA12 also, it is made up of A1 atoms forming a 
p lanar  4-connected net---the net  4a of Wells (1956) 
or the kagom6 net of F rank  & Kasper  (1959)--with 

Zr a toms symmetr ical ly  above and below the hexagonal  
holes in this plane. These considerations support  one's 
general conception of a metal ,  t h a t  there is no preferred 
polyhedron around any  par t icular  a tom, but  t ha t  any  
a r rangement  which satisfies the space group and 
radius-rat io and gives a reasonably large co-ordination 
number  around each a tom is a likely structure.  
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Short range order diffuse scattering in binary substitutional solid solutions is often obscured by 
modulations associated with the fact that  the two kinds of atoms are of different sizes. A method 
is described for the separation of these two components of the diffuse scattering, and it is illustrated 
by its application to CuAu. I t  is suggested that  a determination of the size effect coefficients along 
with the short range order parameters will provide a greater insight, into the short range structure 
of an alloy. 

I n t r o d u c t i o n  

I f  the a toms of a b inary  subst i tut ional  solid solution 
are ar ranged on the atomic sites such tha t  there is 
no long range order, supers t ructure  reflections dis- 
appear  and are replaced by diffuse scattering. The 
Fourier  t ransform of this short  range order diffuse 
intensi ty gives the short  range order parameters ,  or 

* Operated for the U.S. Atomic Energy Commission by the 
Union Carbide Corporation. 

the average relative populations of the two kinds of 
a toms in the various coordination shells about  an 
a tom at  the origin. Rober ts  (1954) discovered t h a t  the 
diffuse scattering for the alloy CuAu was modula ted  
in a way not compatible with the cosine Fourier  
series representat ion of short  range order, and Warren ,  
Averbach & Roberts  (1951) showed tha t  these modula-  
tions are associated with small static displacements 
of the a toms from the sites of the average lattice. 
Such displacements are due, in most metallic solid 
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solutions, to the disorderly ar rangement  of atoms of 
two sizes on a set of sites. These size effect modulat ions 
have since been observed in a number  of other solid 
solutions, and have caused ambigui t ies  in the deter- 
minat ion  of short range order parameters.  

I t  is the purpose of this paper  to describe a method 
for the separat ion of the size effect modulat ions  from 
the short range order diffuse scattering, and to show 
how the modulat ions m a y  be interpreted quanti ta-  
t ively  to give, a long with the order parameters,  
a considerably more detai led description of the short 
range structure of an alloy than  has hi therto been 
a t tempted.  

D e s c r i p t i o n  of t h e m e t h o d  

Consider a close-packed cubic crystal,  the sites of 
which are populated by two kinds of atoms, A and B. 
The atoms m a y  be arranged with a degree of short 
range order, but  because the order is not perfect, 
each atom m a y  be stat ical ly displaced from its latt ice 
site. Then Warren,  Averbach & Roberts  (1951) have 
shown tha t  the diffuse X-ray  scattering m a y  be writ ten 

I / [ N m A  m B  (fA --fB) e] = Z O~lmn COS 2~ (hll + h2m + h3n) 
l m n  

--..~" t3tmn2~(hll + hem + han) sin 27e(hll + hem + h3n) . 
l m n  (1) 

Here, I / N  is the diffuse in tens i ty  in electron units 
per atom, mA is the fraction of the total number  of 
atoms in the crystal which have atomic scattering 
factor fA, and m s  and fB  are similar  quanti t ies  for 
B atoms. The position of any  atom relative to the 
origin site is given by lal/2 + ma2/2 + naa/2, where a~, as, 
and as are vectors along the cubic uni t  cell edges. 
For a close-packed cubic material ,  the integers lmn 
must  have an even sum. The quan t i ty  aZrnn is the 
short range order parameter  associated with the lmn 
coordination shell. ~Xlmn= 1 - (pZmn/mA) where plmn is 
the probabi l i ty  of f inding an A atom in the lmn co- 
ordinat ion shell of a B atom. The continuous variables 
h~heh8 define a part icular  position in reciprocal space. 
At the Bragg m a x i m a  they take on values equal to 
half the Miller indices. 

The coefficients flZmn are associated with the fact 
tha t  the equi l ibr ium positions of the atoms do not 
correspond precisely to lattice sites. If the interatomic 
distances for A A ,  A B ,  and B B  pairs are equal and 
correspond to lattice translations,  then all fllmn are 
zero. 

The derivat ion of equat ion (1) is dependent  on the 
assumption tha t  the displacement  ~ of an atom from 
its site is sufficiently small  tha t  the approximat ion 

exp [ 2 ~ i [ ( s -  s0)/2]. 5] ~ 1 + 2 ~ i [ ( s -  s0)/2]. 5 (2) 

holds. The consequences of this assumption will be 
discussed in a later section. The uni t  vectors So and s 
define the directions of the incident and scattered 
beams. 

If da ta  are gathered only in the plane h s = 0  in 
reciprocal space, as is often done, then equation (1) 
m a y  be wri t ten 

I '(hlh2) = ~ A zm cos 2~ (hll + h2m) 
l m  

- . _ Y B z m 2 ~ ( h l l + h 2 m )  sin 2 ~ ( h l l + h 2 m )  , (3) 
l rn  

where 
I(hlh20) 

I '(hlhe) = ~ m A m B ( f A _ _ f B )  e , 

A~m = .~Y ~X~mn, Bzm = )_2 flzmn • 
?z 71 

We wish to separate the two series of equat ion (3) 
from each other with no assumptions.  We form the 
function Q(hlhe) = I '(hlhe) - I ' (h l ,  he + 1 ). From (3) it is 
clear tha t  

Q(hlhe) = .~ ,Bzm2~m sin 2 ~ ( h l l + h e m )  . (4) 
l m  

From this expression m a y  be obtained 

P(hlhe) = heQ(hl he) + hi Q(hehl) 

= . , . ,YBzm2Z(hll+hem) sin 2:r~(hll+hem) . (5) 
l m  

From equations (3) and (5) there results 

I ' (h lhe )+P(h lh2)  = .~Az ,n  cos 2:n(h l l+h~m)  . (6) 
l m  

The size effect is thus el iminated from the da ta  
without  the determinat ion of the parameters  Bzm and 
without  any  assumptions concerning their  relative 
magnitudes.  

The measurements  of Roberts  (1954) of the diffuse 
scattering for the alloy CuAu are excellent data  to 
demonstra te  the method.  Shown in Fig. l(a) is the 
measured in tens i ty  for this alloy quenched from 500 
°C., corrected for f2 and polarization dependence, in 
the hlheO plane. For best short range order parameter  
determinat ions,  it is desirable to perform the separa- 
tion as near to the origin as possible. Here the size 
effect modulat ions are small,  and all effects due to 
thermal  motion are minimized.  The area in the hlhe0 
plane given by ½-_<hi_< 1 and 0_<he_< 1 was used 
for this case. 

Fig. l(b) shows the function given by equation (6) as 
determined from the contour map of Fig. l(a) without 
the evaluat ion of the size effect coefficients B~m. 

D i s c u s s i o n  

Though the above described method m a y  be used to 
determine directly the parameters  A,m, which is the 
usual object of a diffuse scattering experiment ,  it  
should be pointed out tha t  the quanti t ies  Bzm may  
also be obtained by Fourier  inversion of equation (4). 
Both sets of coefficients then determine not  only the 
probabi l i ty  of f inding A A ,  B B ,  and A B  pairs of atoms 
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Fig. 1. (a) Diffuse intensity distribution in the hlh20 plane 
for CuAu quenched from 500 °C. as measured by Roberts 
(1954). High intensity contours near the fundamental Bragg 
maxima have been omitted. (b) Diffuse intensity distribu- 
tion for CuAu after correction for the size effect modula- 
tions. Contours near the fundamental Bragg maxima have 
been omitted. 

in any  given coordination shell, but  as well they 
provide a measure of how the distance between the 
three types of pairs deviate from the average distance 
as given by the latt ice constant. Such a t rea tment  of 
diffuse scattering should provide a new quant i ta t ive  
insight into the short range structure of an alloy. 
In  par t icular  it should be useful for the s tudy of 
precipitat ion hardening systems in an early state of 
ageing. 

I t  is interesting to notice how the size effect modula- 
tions distort  and obscure the short range order diffuse 
intensi ty  distribution. Discussing the intensi ty  distri- 
bution of Fig. l(a), Roberts  (1954) observes tha t  
' in CuAu the diffuse peaks due to short range order 
are roughly spherical ra ther  than  having the pro- 
nounced disk shape which Cowley (1950) found for 

CusAu.' Fig. l(b) shows tha t  after the size effect 
modulat ions are removed, the disk-like character of 
the in tens i ty  distr ibut ion as found by Cowley is quite 
apparent .  

If  one neglects the effect of order on the size effect, 
the magni tude  of the modulat ions relative to the Laue 
monotonic scattering (the leading term of the short 
range order Fourier  series) should increase as the 
concentration of the atoms with larger f increases. 
The measurements  of Cowley for CusAu and those of 
Ba t t e rman  (1957) for CuAu3 confirm this expectation. 
In  electron units, the Laue monotonic scattering for 
these two alloys should be the same. However Batter-  
man ' s  diffuse scattering measurements  are so dis- 
torted by the size effect that ,  without  correction, 
a determinat ion of short range order parameters  is 
almost impossible. I t  is for tunate  tha t  early measure- 
ments  in this system were begun with copper-rich 
alloys. 

The approximat ion of equation (2) used by Warren,  
Averbach & Roberts omits an effect considered by 
Huang  (1947) and, in modified form, by Borie (1957, 
1959). I t  m a y  be shown that  the quadrat ic  term 
omitted in (2) gives rise to a decrease in in tensi ty  of 
the Bragg m a x i m a  and a diffuse scattering, an effect 
similar to tha t  due to thermal  motion. However, 
such Huang diffuse scattering is concentrated in the 
vicini ty of the fundamenta l  diffraction maxima,  a 
region obscured by temperature  diffuse scattering as 
well. The above described t rea tment  of the data  m a y  
usually be carried out omit t ing this region with no 
serious loss. For the purposes of this paper, the 
War ren -Averbach-Rober t s  theory is more useful than  
tha t  of Huang,  since it invokes no elastic model for 
the computat ion of the coefficients fllmn. Such a general 
representat ion of the static atomic displacements is 
applicable to systems in which the displacements m a y  
be due to atomic properties other than  simple atomic 
size. 

The writer wishes to thank  Dr B. W. Roberts  for 
permission to use his diffuse scattering measurements  
for CuAu. He is also obliged to Mr D. 0.  Welch who 
performed m a n y  of the calculations necessary for the 
construction of Fig. l(b). 
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