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Table 3. Interatomic distances in Zr:Als

Distances in the Zr co-ordination polyhedron
(13 atoms) (A)

Zr-Al (a): 283, 2:89, 3-22
Zr-Al (b): 2-88, 291, 2-93, 2-97, 3-00 (twice)
Zr-Zr: 3-40 (twice), 3-43 (twice)

Distances in the general Al co-ordination polyhedron
(10 atoms) (A)

Al-Al (a): 2-67, 2:71
Al-Al (b): 2-77 (twice)
Al-Zr: 2-88, 2-91, 2-93, 2-97, 3-00 (twice)

Distances in the special Al co-ordination polyhedron
(10 atoms) (4)
Al-Al (b): 2-67 (twice), 2-71 (twice)
Al-Zr: 2-83 (twice), 2-89 (twice), 3-22 (twice)

The co-ordination polyhedra do not have any simple
form. Their shapes can be obtained from the bonding
shown in Fig. 1, where contacts outside the puckered
triangular nets are shown as dotted lines and the bonds
within the nets are shown as full lines.

No simple relation has been found between the strue-
ture of ZrsAls and that of ZrAl, (Wilson, 1959).
The basic symmetry operations in the two structures
are different, and, although there is a three-fold net
in ZrAl; also, it is made up of Al atoms forming a
planar 4-connected net—the net 4a of Wells (1956)
or the kagomé net of Frank & Kasper (1959)—with
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Zr atoms symmetrically above and below the hexagonal
holes in this plane. These considerations support one’s
general conception of a metal, that there is no preferred
polyhedron around any particular atom, but that any
arrangement which satisfies the space group and
radius-ratio and gives a reasonably large co-ordination
number around each atom is a likely structure.

This work originated in a research programme at
the Royal Military College of Science, Shrivenham,
under the general direction of Mr C. G, Wilson. The
authors would like to thank Mr H. D. Mallon, R.M.C.S.,
for the preparation and examination of the micro-
structures of the compound, and also Dr H.W.
Ehrlich, Chemistry Department, University of Edin-
burgh, for helpful discussions. The encouragement of
Prof. N. Feather to complete this work is gratefully
acknowledged. This paper is published by permission
of the Dean of the Royal Military College of Science,
Shrivenham.
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The Separation of Short Range Order and Size Effect Diffuse Scattering

By BerNARD Borik
Metallurgy Division, Oak Ridge National Laboratory,* Oak Ridge, Tennessee, U.S. A.

(Received 1 August 1960)

Short range order diffuse scattering in binary substitutional solid solutions is often obscured by
modulations associated with the fact that the two kinds of atoms are of different sizes. A method
is described for the separation of these two components of the diffuse scattering, and it is illustrated
by its application to CuAu. It is suggested that a determination of the size effect coefficients along
with the short range order parameters will provide a greater insight into the short range structure

of an alloy.

Introduction

If the atoms of a binary substitutional solid solution
are arranged on the atomic sites such that there is
no long range order, superstructure reflections dis-
appear and are replaced by diffuse scattering. The
Fourier transform of this short range order diffuse
intensity gives the short range order parameters, or

* Operated for the U.S. Atomic Energy Commission by the
Union Carbide Corporation.

the average relative populations of the two kinds of
atoms in the various coordination shells about an
atom at the origin. Roberts (1954) discovered that the
diffuse scattering for the alloy CuAu was modulated
in a way not compatible with the cosine Fourier
series representation of short range order, and Warren,
Averbach & Roberts (1951) showed that these modula-
tions are associated with small static displacements
of the atoms from the sites of the average lattice.
Such displacements are due, in most metallic solid
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solutions, to the disorderly arrangement of atoms of
two sizes on a set of sites. These size effect modulations
have since been observed in a number of other solid
solutions, and have caused ambiguities in the deter-
mination of short range order parameters.

It is the purpose of this paper to describe a method
for the separation of the size effect modulations from
the short range order diffuse scattering, and to show
how the modulations may be interpreted quantita-
tively to give, along with the order parameters,
a considerably more detailed description of the short
range structure of an alloy than has hitherto bheen
attempted.

Description of the ‘method

Consider a close-packed cubic crystal, the sites of
which are populated by two kinds of atoms, 4 and B.
The atoms may be arranged with a degree of short
range order, but because the order is not perfect,
each atom may be statically displaced from its lattice
site. Then Warren, Averbach & Roberts (1951) have
shown that the diffuse X-ray scattering may be written

I/[NmAmB(fA—fB)Z] = 3 Ximn COS 27‘[(h1l+h2m+ han)
imn

— 3 Bimn 27 (hil+hom + han) sin 27t (hil+ ham + han) .
Imn
(1)

Here, I/N is the diffuse intensity in electron units
per atom, ma is the fraction of the total number of
atoms in the crystal which have atomic scattering
factor fa, and mp and fg are similar quantities for
B atoms. The position of any atom relative to the
originsite is given by [2,/2 +ma,/2 +na,/2, where ay, as,
and as are vectors along the cubic unit cell edges.
For a close-packed cubic material, the integers Imn
must have an even sum. The quantity oims is the
short range order parameter associated with the Imn
coordination shell. &imn=1— (Pimn/Mma) where pimn is
the probability of finding an 4 atom in the Imn co-
ordination shell of a B atom. The continuous variables
hihohs define a particular position in reciprocal space.
At the Bragg maxima they take on values equal to
half the Miller indices.

The coefficients Bimn are associated with the fact
that the equilibrium positions of the atoms do not
correspond precisely to lattice sites. If the interatomic
distances for A4, AB, and BB pairs are equal and
correspond to lattice translations, then all Bimn are
zZero.

The derivation of equation (1) is dependent on the
assumption that the displacement & of an atom from
its site is sufficiently small that the approximation

exp [27i[(s — o)/ A]. 8] = 1+ 27i[(s — 80)/A]. B (2)

holds. The consequences of this assumption will be
discussed in a later section. The unit vectors so and s
define the directions of the incident and scattered
beams.
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If data are gathered only in the plane k3=0 in
reciprocal space, as is often done, then equation (1)
may be written

I'(hihe) = X Ay cos 27 (hil+ hem)
im
— 3 Bun 27 (hil+ hom) sin 27 (hil+ham) ,  (3)
im

where

I(h1h20
I'(hahe) (h1h20)

= Fmimal e f

A = 2 imn, Bim = Z,Blmn .
n n

We wish to separate the two series of equation (3)
from each other with no assumptions. We form the
function Q(hihe)=1I'(hihe)—I'(h1, he+1). From (3) it is
clear that

Q(hhs) = 3 Bim27m sin 2xw(lal+hem) . (4)
Im

From this expression may be obtained

P(hihz2) = ho@(h1he) + k1 Q(hah1)
= X Bin2a(hil+hem) sin 27 (hal+hem) . (5)
im

From equations (3) and (5) there results

I'(h1ho) + P(hihs) = X Ay cos 27 (hil+hem) . (6)
Im

The size effect is thus eliminated from the data
without the determination of the parameters B, and
without any assumptions concerning their relative
magnitudes.

The measurements of Roberts (1954) of the diffuse
scattering for the alloy CuAu are excellent data to
demonstrate the method. Shown in Fig. 1(a) is the
measured intensity for this alloy quenched from 500
°C., corrected for f2 and polarization dependence, in
the h1h20 plane. For best short range order parameter
determinations, it is desirable to perform the separa-
tion as near to the origin as possible. Here the size
effect modulations are small, and all effects due to
thermal motion are minimized. The area in the Aik20
plane given by 3 <hi <1 and 0 < ks < 1 was used
for this case.

Fig. 1(b) shows the function given by equation (6) as
determined from the contour map of Fig. 1(a) without
the evaluation of the size effect coefficients Bp.

Discussion

Though the above described method may be used to
determine directly the parameters A, which is the
usual object of a diffuse scattering experiment, it
should be pointed out that the quantities B, may
also be obtained by Fourier inversion of equation (4).
Both sets of coefficients then determine not only the
probability of finding 44, BB, and AB pairs of atoms
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Fig. 1. (a) Diffuse intensity distribution in the %,k,0 plane
for CuAu quenched from 500 °C. as measured by Roberts
(1954). High intensity contours near the fundamental Bragg
maxima have been omitted. (b) Diffuse intensity distribu-
tion for CuAu after correction for the size effect modula-
tions. Contours near the fundamental Bragg maxima have
been omitted.

in any given coordination shell, but as well they
provide a measure of how the distance between the
three types of pairs deviate from the average distance
as given by the lattice constant. Such a treatment of
diffuse scattering should provide a new quantitative
insight into the short range structure of an alloy.
In particular it should be useful for the study of
precipitation hardening systems in an early state of
ageing.

It is interesting to notice how the size effect modula-
tions distort and obscure the short range order diffuse
intensity distribution. Discussing the intensity distri-
bution of Fig. 1(a), Roberts (1954) observes that
‘in CuAu the diffuse peaks due to short range order
are roughly spherical rather than having the pro-
nounced disk shape which Cowley (1950) found for

SHORT RANGE ORDER AND SIZE EFFECT DIFFUSE SCATTERING

CusAu.’ Fig. 1(b) shows that after the size effect
modulations are removed, the disk-like character of
the intensity distribution as found by Cowley is quite
apparent.

If one neglects the effect of order on the size effect,
the magnitude of the modulations relative to the Laue
monotonic scattering (the leading term of the short
range order Fourier series) should increase as the
concentration of the atoms with larger f increases.
The measurements of Cowley for CusAu and those of
Batterman (1957) for CuAug confirm this expectation.
In electron units, the Laue monotonic scattering for
these two alloys should be the same. However Batter-
man’s diffuse scattering measurements are so dis-
torted by the size effect that, without correction,
a determination of short range order parameters is
almost impossible. It is fortunate that early measure-
ments in this system were begun with copper-rich
alloys.

The approximation of equation (2) used by Warren,
Averbach & Roberts omits an effect considered by
Huang (1947) and, in modified form, by Borie (1957,
1959). It may be shown that the quadratic term
omitted in (2) gives rise to a decrease in intensity of
the Bragg maxima and a diffuse scattering, an effect
similar to that due to thermal motion. However,
such Huang diffuse scattering is concentrated in the
vicinity of the fundamental diffraction maxima, a
region obscured by temperature diffuse scattering as
well. The above described treatment of the data may
usually be carried out omitting this region with no
serious loss. For the purposes of this paper, the
Warren—-Averbach-Roberts theory is more useful than
that of Huang, since it invokes no elastic model for
the computation of the coefficients fimn. Such a general
representation of the static atomic displacements is
applicable to systems in which the displacements may
be due to atomic properties other than simple atomic
size.

The writer wishes to thank Dr B. W. Roberts for
permission to use his diffuse scattering measurements
for CuAu. He is also obliged to Mr D. O. Welch who
performed many of the calculations necessary for the
construction of Fig. 1(b).
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